Abstract

Kudoa septempunctata (Myxosporean: Multivalvulida) is known as a cause of foodborne disease associated with consumption of raw flesh of the olive flounder (Paralichthys olivaceus). Knowledge of its life cycle, particularly alternate annelid hosts and reservoirs or susceptible fish hosts in natural waters, may facilitate disease control in aquaculture farms. Our recent survey of myxosporean infection in monacanthid fish in natural waters around Japan revealed infection with three kudoid species prevalent in the olive flounder, i.e., K. septempunctata, Kudoa thyrsites, and Kudoa shiomitsui. Of the 51 black scrapers (Thamnaconus modestus) examined, five fish were infected: two fish with K. septempunctata and three with K. thyrsites. One of the fish infected with K. septempunctata was also infected with a K. thyrsites-like species. One of the 17 threadsail filefish (Stephanolepis cirrhifer) and two of four unicorn leatherjackets (Aluterus monoceros) were parasitized with K. shiomitsui. Three modest filefish (Thamnaconus modestoides) had no kudoid infection. K. septempunctata from a black scraper fished in the Inland Sea of Japan off Yamaguchi had 6-8 (predominantly 7) shell valves/polar capsules, whereas K. septempunctata found in another black scraper from the Sea of Japan off Tottori had 5 or 6 (predominantly 6). However, the two isolates displayed identical 18S and 28S ribosomal RNA gene (rDNA) nucleotide sequences, which were also identical to the isolates from the olive flounder. K. thyrsites from the Inland Sea of Japan off Yamaguchi and Sea of Japan off Tottori and K. shiomitsui from the Sea of Japan off Shimane and western Pacific Ocean off Kochi were also morphologically and genetically characterized. They were found to be coincident with the previous reports from olive flounders. Furthermore, the K. thyrsites-like species found in a black scraper from the Inland Sea of Japan off Yamaguchi was morphologically and genetically characterized; a new species, Kudoa parathyrsites n. sp., is erected for this species. The relationships of the new species with K. thyrsites and related species as well as those of K. shiomitsui with Kudoa pericardialis and related species parasitizing the pericardium are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.