Abstract

A number of magnetic refrigeration prototypes have been developed in recent years. Nevertheless, their optimization remains a challenging process. This paper presents an efficient approach based on artificial intelligence for optimizing the cooling performance of multi-layer active magnetic regenerators. To this end, a validated numerical model was used to predict the temperature difference between the hot and cold sources of a four-layer active magnetic regenerator. By using a nanofluid as a heat transfer fluid, the maximum temperature span of the device can be increased by approximately 20%. More importantly, by simultaneously optimizing a set of 10 key parameters, including the geometric parameters and the working conditions, the thermodynamic performance of the four-layer active magnetic regenerator prototype can be markedly enhanced by almost 40%. The newly established approach will be of considerable practical importance to both scientists and engineers since it will enable them to avoid costly experimental trials by optimizing a wide number of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.