Abstract
MDR1 (once P-glycoprotein, now referred to as ABCB1) plays a role as a blood–brain barrier, preventing drug absorption into the brain, and is known to confer multiple drug resistance in cancer chemotherapy. MDR1 is composed of two repeated fragments, and there are six transmembrane domains (TMD) on the N-terminal of each repeat and a nucleotide (ATP) binding domain (NBD) on the C-terminal. These two repeats are dependent but cooperate as one functional molecule, with one pocket for excreting drugs. The 12 TM domains form a funnel facing the outside of cells, and NBD is in cytosol as a dimer. One NBD is composed of the Walker A, Q-loop, ABC-signature and the Walker B for phosphate binding of nucleotide. This tertiary structure of MDR1 is suggested from the structure of the NBD of histidine permease (HisP), clarified by x-ray crystallography. On the model of HisP, the NBD positions described above make a functional domain, and the same NBD structure is found on many other ABC transporters. An experiment with MDR1 gene knockout mice showed the high plasma AUC of drugs in mdr null mice [mdr1a(−/−)] and a high level in the brain, indicating that MDR1 has an efflux function (prevention of absorption) in the intestinal lumen and acts as a barrier of drug uptake in the brain, as well as has the function of urinary and biliary excretion of drugs. The transcription of MDR1 is dependent on two sites; the promoter site (− 105/− 100)(− 245/− 141) and the enhancer site (− 7864/− 7817). Autoantibody from autoimmune hepatitis patients weakly reacted with the extracellular peptide (aa314–aa328 between TM5 and 6) of MDR1 on the outside of the cell membrane, and did not react with peptides in the NBD and in the membrane-spanning region in TM5. There is an ambiguity about the function of MDR1 as GlcCer translocase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.