Abstract
We introduce a new high-resolution central scheme for multidimensional Hamilton–Jacobi equations. The scheme retains the simplicity of the non-oscillatory central schemes developed by C.-T. Lin and E. Tadmor (in press, SIAM J. Sci. Comput.), yet it enjoys a smaller amount of numerical viscosity, independent of 1/Δt. By letting Δt↓0 we obtain a new second-order central scheme in the particularly simple semi-discrete form, along the lines of the new semi-discrete central schemes recently introduced by the authors in the context of hyperbolic conservation laws. Fully discrete versions are obtained with appropriate Runge–Kutta solvers. The smaller amount of dissipation enables efficient integration of convection-diffusion equations, where the accumulated error is independent of a small time step dictated by the CFL limitation. The scheme is non-oscillatory thanks to the use of nonlinear limiters. Here we advocate the use of such limiters on second discrete derivatives, which is shown to yield an improved high resolution when compared to the usual limitation of first derivatives. Numerical experiments demonstrate the remarkable resolution obtained by the proposed new central scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.