Abstract

Imaging Plates (IPs) are in principle ideal electron detectors combining a large active layer area with a high sensitivity, linear dynamic range detection over 5 orders of magnitude. A moderate resolution and a decreasing detection quantum efficiency (DQE) for higher electron doses limit their use so far. The decrease of the DQE results from linear noise contributed by readout laser instabilities and inhomogeneities of the IP active layer. Here we present data on a new IP drum scanner prototype. This scanner combines twin channel amplification electronics with a new type of readout laser which allows a smaller readout focus and increased stability. The current nominal pixel size is 25 microm, and the measured modulation transfer function (MTF) indicates that further reduction of the scanning step size down to pixel sizes in the range of 12-15 microm should be possible. A unique feature of the new scanner is the simultaneous recording of the reflected readout laser light. The reflected light signal can be used for a posteriori alignment of repeated scans of one individual IP and for a correction of one part of the high spatial frequency noise contribution (reflected light correction). The posteriori alignment now allows an easy conventional gain normalization of the luminescence signal without using special markers on the IP. Both corrections lead to an increase of the DQE for high electron doses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.