Abstract
Abstract An all-encompassing new theory of heat and mass transfer (HMT) and growth equations have been developed for freely falling spherical hailstones with diameters of 0.5–8 cm. The initial six variables are diameter, liquid water content, air and hailstone surface temperatures, net collection efficiency, and ice fraction of spongy deposit. They are replaced by three or four new ones, depending on the three growth categories. Two new variables are products of “old” ones: (i) the square root of the Reynolds number Re and the liquid water content and (ii) net collection efficiency and ice fraction of the spongy deposit. Only the products matter, not the individual parts. [The two variables in (ii) are as important as the two in (i).] Two old variables remain: air and surface temperatures. The HMT can be further compacted for hailstorms with specified pressure–air temperature–height profiles. Further, Re for free-fall reveals unexpected complexities—issues important to solve HMT problems. The “new hailstone physics” is based on 55 years of in-house studies of all aspects of hailstone growth, followed by 5 years of shaping these puzzle pieces and assembling them into a coherent picture. This was only possible by recognizing the free-fall mode: a special gyration that allows hailstones to grow with a radial symmetry and, thus, homogeneous surface temperature. Part II will display the surprising solutions to growth and HMT and firmly link the hailstones to mostly spongy growth with shedding that favors a hail-coupled rain mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.