Abstract

Since tubes are widely used for different industrial applications, processing of tubes by the Severe Plastic Deformation (SPD) method has been the target of different attempts. Among these attempts, development of SPD processes for tubes based on Equal Channel Angular Pressing (ECAP) has been more successful. As an illustration, Tube Channel Pressing (TCP) has been presented as an attractive SPD process since a relatively homogenous strain can be imposed on different sizes of tubes by this process. However, since die/mandrel geometry has a remarkable effect on the deformation behavior of tube in this process, more efforts must be focused on the optimization of the geometry of this process. This work is aimed to examine a new die geometry for TCP in order to reduce the strain heterogeneity and rupture risk of tube through the process. For this purpose, the effects of different geometrical parameters on the deformation behavior of tube during the process are studied using FEM simulations. In these simulations, the rupture risk of tube is considered using a damage criterion and then, results of simulations are compared with experiments. Results show that the new geometry of TCP imposes more intense strain, causes less strain heterogeneity and results in less risk of rupture of tube during the process. In addition, comparison of simulations and experiments shows that the applied simulation method can predict the rupture of tube during TCP. Besides this, different geometrical parameters of the new geometry of TCP are optimized by simulations considering dimensions of tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.