Abstract

When searching for deviations of statistical isotropy in CMB, a popular strategy is to write the two-point correlation function (2pcf) as the most general function of four spherical angles (i.e., two unit vectors) in the celestial sphere. Then, using a basis of bipolar spherical harmonics, statistical anisotropy will show up if and only if any coefficient of the expansion with non-trivial bipolar momentum is detected -- although this detection will not in general elucidate the origin of the anisotropy. In this work we show that two new sets of four angles and basis functions exist which completely specifies the 2pcf, while, at the same time, offering a clearer geometrical interpretation of the mechanisms generating the signal. Since the coefficients of these expansions are zero if and only if isotropy holds, they act as a simple and geometrically motivated null test of statistical isotropy, with the advantage of allowing cosmic variance to be controlled in a systematic way. We report the results of the application of these null tests to the latest temperature data released by the Planck collaboration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.