Abstract

New geological and structural facts have been identified under the auriferous lateritic cover in Garga Sarali, Ndokayo area. Data were collected using AMT receiver system with frequencies ranging from 20 Hz to 50000 Hz. It consists of 16 AMT stations along 03 profiles, over Pan-African formations of East Cameroon. The wide frequency range enabled us to probe deep into the subsurface to obtain necessary information. Using Imagem software, coherency of data has been evaluated and only the data with a coherency below or equal to 0.7 have been considered. Two programs were used to map the subsurface. The pseudosections were obtained using IPI2WIN-MT, while geoelectrical sections were obtained using Stratagem Resistivity Plotter. Analysis of the curves of dimensionality tests shows that there is not always a complete superposition between the two telluric directions, translating the fact that the variation of the resistivity is not 1D, but rather 2D or 3D. Major features of 2D resistivity model from the respective profiles were identified. These features include a set of lower resistive formations going from the surface to 1000 m depth, lying on a set of resistive formations that appears at the surface and below the lower resistive formations. However, a very conductive layer was observed in depth in the three profiles. These facts show that the study area is made up of mixture of both conductive and resistive materials, suggesting a prolongation of the overlap between the Congo Craton and the Pan-African in depth to the north and the location of the CC/Pan-African limit above 4°N parallel accordingly. Deeper electrical discontinuities, interpreted as faults following a NE-SW trend, were highlighted. All these new data suggest that the study area underwent an intense tectonic activity with ductile to brittle deformations due to the presence of the BOSZ.

Highlights

  • The Pan-African tectonic evolution in Cameroon is marked by large scale shear zones that have intensely transported early structures [1, 2]

  • There is a link between the present study and the previous ones, as it shows that the fault oriented NE-SW was derived from the tectonic event that has occurred during the Pan-African orogeny and it is directly aligned with the Central African Shear Zone (CASZ)

  • The integration of geophysical and geological data led to the following conclusions: (i) The analysis, modelling, and interpretation of audiomagnetotellurics data show the existence of electrical discontinuities that could be interpreted as faults and which correlate with the surface structural lineaments trend evidenced by satellite imagery analysis

Read more

Summary

Introduction

The Pan-African tectonic evolution in Cameroon is marked by large scale shear zones that have intensely transported early structures [1, 2]. Cameroon neoproterozoic units belong to the North Equatorial Fold Belt (NEFB) which is affected by the Central African Shear Zone (CASZ) and defined as a pre-Mesozoic crustal strike-slip fault system [1, 2]. Shear Zone (CCSZ) to the north and the Sanaga Fault (SF) to the south. The SF system is well represented in the east part of Cameroon by the Betare-Oya Shear Zone (BOSZ), where many mineralized substances are well established. The CCSZ is defined as a Pan-African postcollisional ductile fault, as a transcontinental structure marked by folds, parallel, or enechelon relays [3], and as major lineament of the Pan-African orogen of Central Africa [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call