Abstract

Increasing temperature of seawater is often associated with increased exposure incidence of disease in field and in aquaculture populations. Numerous episodic mass mortalities of the abalone Haliotis tuberculata have been observed along the northern Brittany coast of France caused by a complex interaction between the host, pathogen and environmental factors. Here, we evaluated the potential of high-resolution melting (HRM) analysis for mutation genotyping and development of genetic markers for resistance to vibriosis in the gastropod species H. tuberculata. Small amplicon assays were developed and revealed genetic polymorphism between surviving and susceptible abalone obtained after two successive infections of aquaculture families in controlled conditions. Together with specific COI haplotypes, we identified particular genotypes in nascent polypeptide-associated complex subunit alpha and ferritin genes linked to the susceptibility or resistance of abalone to vibriosis. Selection of genitors based on these genes may increase the proportion in offspring of resistant individuals of more than 76 %. Finally, HRM assays constitute a very efficient genotyping tool to validate the genetic markers on a representative number of individuals of wild populations and thus identify future resistant genitors for aquaculture or conservation purposes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.