Abstract
New requirements for the validation of simulation models based on measurements in many grid codes show that existing generic approaches for generator and converter models of doubly fed generator systems (DFG) may not be accurate enough. The authors show that by applying a detailed analysis of the generator equations and the converter control design, a reduction of the model complexity is possible while maintaining a high level of accuracy. The generator model presented in this paper allows an improved representation of the stationary and dynamic response of wind turbines equipped with DFG systems especially during grid faults and during voltage recovery. The model is designed to represent modern DFG systems independently of vendor specific hardware and software. The results of simulations are compared to measurements of a voltage dip involving wind turbines. The generator model has been proposed as extension to the WECC/IEEE generator models and has been accepted as reference for IEC TC88 working group 27 (standard IEC 61400-27-1) on modeling and model validation of wind turbines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.