Abstract

Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of patients with advanced or metastatic non-small cell lung cancer (NSCLC) harboring most driver gene alterations. Starting from the first generation, research rapidly moved to the development of newer, more selective generations of TKIs, obtaining improved results in terms of disease control and survival. However, the use of novel generations of TKIs is not without limitations. We reviewed the main results obtained, as well as the ongoing clinical trials with TKIs in oncogene-addicted NSCLC, together with the biology underlying their potential strengths and limitations. Across driver gene alterations, novel generations of TKIs allowed delayed resistance, prolonged survival, and improved brain penetration compared to previous generations, although with different toxicity profiles, that generally moved their use from further lines to the front-line treatment. However, the anticipated positioning of novel generation TKIs leads to abolishing the possibility of TKI treatment sequencing and any role of previous generations. In addition, under the selective pressure of such more potent drugs, resistant clones emerge harboring more complex and hard-to-target resistance mechanisms. Deeper knowledge of tumor biology and drug properties will help identify new strategies, including combinatorial treatments, to continue improving results in patients with oncogene-addicted NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call