Abstract

BackgroundMonitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient’s home. A new generation of wearable goniometers based on knitted piezoresistive fabric (KPF) technology is presented.MethodsKPF single-and double-layer devices were designed and characterized under stretching and bending to work as strain sensors and goniometers. The theoretical working principle and the derived electromechanical model, previously proved for carbon elastomer sensors, were generalized to KPF. The devices were used to correlate angles and piezoresistive fabric behaviour, to highlight the differences in terms of performance between the single layer and the double layer sensors. A fast calibration procedure is also proposed.ResultsThe proposed device was tested both in static and dynamic conditions in comparison with standard electrogoniometers and inertial measurement units respectively. KPF goniometer capabilities in angle detection were experimentally proved and a discussion of the device measurement errors of is provided. The paper concludes with an analysis of sensor accuracy and hysteresis reduction in particular configurations.ConclusionsDouble layer KPF goniometers showed a promising performance in terms of angle measurements both in quasi-static and dynamic working mode for velocities typical of human movement. A further approach consisting of a combination of multiple sensors to increase accuracy via sensor fusion technique has been presented.

Highlights

  • Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient’s home

  • Single layer resistance vs. stretching characteristics Figure 9 shows the relation between the SL electrical resistance and the deformation applied

  • We have developed a novel type of wearable goniometer based on knitted piezoresistive fabric (KPF) technology

Read more

Summary

Introduction

Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient’s home. Retrieving subject posture from textile strain measurements is highly affected by the relative position of sensors with respect to the joint being monitored This issue has been addressed with the use of tight-fitting garments, which can reduce user acceptance especially in home rehabilitation contexts. Even in the case of adherent garments, it is not easy to obtain reproducible results due to the inevitable sliding/bending of the sensors on the textile and to the difficulty of wearing the garment in the same way after donning and doffing These latter aspects have limited joint angle tracking due to the necessity of using a complex and long lasting calibration procedure [6] or have restricted sensing garment usage in gesture classification applications [8]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.