Abstract
This study aimed to synthesize a novel elastomeric ligature with dimethylaminohexadecyl methacrylate (DMAHDM) grafted, providing a new strategy for improving the issue of enamel demineralization during fixed orthodontics. DMAHDM was incorporated into elastomeric ligatures at different mass fractions using ultraviolet photochemical grafting. The antibacterial properties were evaluated and the optimal DMAHDM amount was determined based on cytotoxicity assays. Moreover, tests were conducted to evaluate the in vivo changes in the mechanical properties of the elastomeric ligatures. To assess the actual in vivo effectiveness in preventing enamel demineralization, a rat demineralization model was established, with analyses focusing on changes in surface microstructure, elemental composition, and nanomechanical properties. Elastomeric ligatures with 2% DMAHDM showed excellent biocompatibility and the best antibacterial properties, reducing lactic acid production by 65.3% and biofilm bacteria by 50.0% within 24 h, without significant mechanical property differences from the control group (p > 0.05). Most importantly, they effectively prevented enamel demineralization in vivo, enhancing elastic modulus by 73.2% and hardness by 204.8%. Elastomeric ligatures incorporating DMAHDM have shown great potential for application in preventing enamel demineralization, providing a new strategy to solve this issue during fixed orthodontics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.