Abstract

Research and development of membrane materials could achieve high separation performance and provide an alternative technology for CO2 capture in natural gas sweetening, carbon capture from power plants and biogas applications. While syntheses of new materials are necessary, utilizing currently available commodity materials through incorporation of high performance novel materials for most efficient transport process could substantially improve the technology deployment process. This paper presents our recent development in this aspect through mixed matrix membranes using block copolymer material Pebax, incorporating metal organic frame nano-fillers such as ZIF-8 and UiO-66 and its derivatives for the development of mixed matrix membranes (MMMs) and strategically formed thin layers of these MMMs in composite hollow fibers membrane. Not only did those membranes achieve much higher CO2 permeance of more than 350 GPU, while maintaining or improving selectivity, the nano composite hollow fibers also demonstrated much improved performance sustainability such as improved plasticization resistance. On the other hand, composite hollow fibers developed with Pebax gelled ionic liquid membranes demonstrated even better separation performance with mixed gas feed containing water vapor and trace Nox, with promising application for flue gas carbon capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.