Abstract
AbstractVariational inequality (VI) generalizes many mathematical programming problems and has a wide variety of applications. One class of VI solution methods is to reformulate a VI into a normal map nonsmooth equation system, which is then solved using nonsmooth equation-solving techniques. In this article, we propose a first practical approach for furnishing B-subdifferential elements of the normal map, which in turn enables solving the normal map equation system using variants of the B-subdifferential-based nonsmooth Newton method. It is shown that our new method requires less stringent conditions to achieve local convergence than some other established methods, and thus guarantees convergence in certain cases where other methods may fail. We compute a B-subdifferential element using the LD-derivative, which is a recently established generalized derivative concept. In our new approach, an LD-derivative is computed by solving a sequence of strictly convex quadratic programs, which can be terminated early under certain conditions. Numerical examples are provided to illustrate the convergence properties of our new method, based on a proof-of-concept implementation in Python.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.