Abstract

Tetrodotoxin is a potent low weight marine toxin found in warm waters, especially of the Indian and Pacific Oceans. Intoxications are usually linked to the consumption of the puffer fish, although TTX was already detected in several different edible taxa. Benthic organisms such as mollusks and echinoderms, with different feeding habits, were collected monthly along the Portuguese coast from the summer of 2009 until the end of 2010. The extraction and analysis techniques were optimized and TTX and some analogues were detected for the first time in two intertidal gastropod species—Gibbula umbilicalis and Monodonta lineata by LC-MS/MS and UPLC-MS/MS. Although the levels are low, these findings suggest that monitoring of TTX and analogues in North Atlantic species should be implemented so as to detect potentially new toxin vectors and seasonal and/or geographical patterns.

Highlights

  • Tetrodotoxin (TTX) is a low weight potent neurotoxin, named after the Tetradontidae fish family from where it was first isolated in 1909 by Tahara and Hirata [1]

  • In this work our goal was to detect the presence of TTX and some analogues in several marine invertebrate species collected along the continental Portuguese coast, by using UPLC-mass spectrometer (MS)/MS

  • The collected species belonged to different taxa and included gastropods (Monodonta lineata, Monodonta turbinata, Gibbula umbilicalis, Gibbula magus, Littorina littorea, Littorina saxatilis, Nucella lapillus, Ocenebra erinacea, Calliostoma zizyphinum, Patella intermedia, Charonia lampas), bivalves (Mytilus galloprovincialis), sea-urchins (Paracentrotus lividus) and sea-stars (Marthasterias glacialis)

Read more

Summary

Introduction

Tetrodotoxin (TTX) is a low weight potent neurotoxin, named after the Tetradontidae fish family from where it was first isolated in 1909 by Tahara and Hirata [1]. TTX-bearers are typical of warm waters, recent studies report the possible migration of these toxic species from the Red Sea to the Mediterranean Sea through the Suez Canal [18,19,20] This may happen due the opening of new corridors allied to the increase of water temperature as a result of climate change. These factors all together probably influenced the bidirectional migration of species between the Red Sea and the Mediterranean Sea, resulting in the increase of poisoning incidents, especially due to the ingestion of toxic alien species, among them TTX-bearers [18,19,20,21,22]. All patients recovered [18,20,23]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call