Abstract

<p>An effective gas-phase oxidative desulfurization (ODS) process was proposed. The process was studied in a laboratory reactor with a proprietary catalyst at 300-400 ºС and ambient pressure with model fuels represented by thiophene, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) dissolved in octane, isooctane or toluene. The reactivity of different sulfur containing molecules in ODS was shown to increase in the sequence: thiophene < DBT < DMDBT. The main sulfur containing product of oxidation of these compounds was SO<sub>2</sub>. During the gas-phase ODS both processes of sulfur species oxidation and processes of their adsorption were observed and studied. Based on the conducted studies, different ODS process designs comprising its integration with adsorption and regeneration processes and with conventional hydrodesulfurization (HDS) process were proposed. One scheme is based on alternating regimes of ODS and catalyst regeneration in two reactors: sulfur is removed from organic feedstock by oxidation and adsorption in one reactor while simultaneous regeneration of the catalyst that has accumulated sulfur compounds takes place in another reactor. Two other schemes are based on joint use of ODS and HDS. The conventional HDS process is most effective for removal of low-boiling sulfur containing compounds reactive with respect to hydrogen, while removal of refractory sulfur compounds, such as DMDBT is more easily achieved by gas phase ODS. Thus the combination of these processes is expected to be most efficient for deep desulfurization of diesel fuel.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call