Abstract

We computed a 3D control point network for Ganymede using combinations of 126 Voyager-1 and -2 and 87 Galileo images, benefiting from reconstructed trajectory data for the three spacecraft and a more complete Galileo image data base than was available for earlier studies. Using more than 3000 control point coordinates, we determine global shape parameters, including mean radius, spheroid- and ellipsoidal axes, and make tests for various equilibrium shape models, constrained by the most recent estimates for gravity field parameters. We confirm that Ganymede has a pronounced ellipsoidal shape, approximately aligned with the Jupiter-direction, in agreement with Ganymede being in tidal equilibrium. The point heights, suffering from large individual errors, do not reveal any large-scale topography below our typical error levels (97% <5km). By analysis of data residuals we search for, but cannot detect Ganymede longitudinal forced librations. We conclude that libration amplitudes cannot be larger than 0.1° (corresponding to a lateral displacement of 4.6km at the equator).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.