Abstract

Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.