Abstract

Diseases caused by species in the genus Phytophthora are responsible for significant economic losses on a wide range of host plants. Spatial pattern is one of the most characteristic ecological properties of a species, and reflects environmental and genetic heterogeneity and reproductive population growth acting on the processes of reproduction, dispersal, and mortality. Species of Phytophthora can be dispersed either in soil, via surface water movement down rows, from rain splash dispersal, by air, or via movement by humans or invertebrate activity. Dispersal results in patchiness in patterns of disease or inoculum in soil. In this chapter we discuss the mechanisms of dispersal of members of this important genus and describe several methods that can be used to statistically analyze data for which spatial coordinates are known. The methods include testing spatial autocorrelation for binary data or continuous data, semivariograms, and regression models for spatial data. The goal of spatial pattern analysis is to gain an understanding of the mechanisms of dispersal of propagules and to sort out the physical and biological factors that are important for spread of plant pathogens and ultimately, for disease management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call