Abstract

The steel catenary riser (SCR) concept has recently been used in almost every new deepwater field development around the world. Shell pioneered the implementation of the SCR concept in 1994 on its Auger tension leg platform (TLP) in 872 m (2860 ft) water depth. Since then, SCRs have been vital to deepwater field developments. Their use has given a new dimension to oil exploration and transportation in water depths where other riser concepts could not tolerate the environmental loads or would have become very costly. SCR designs are very sensitive to floating support platform or vessel motion characteristics to which they are typically attached. In addition to pipe stresses, the main design issue for the SCR concept is fatigue related. There are two main sources for fatigue: random wave fatigue and vortex-induced vibration (VIV) fatigue. The former is due to wave action and the associated platform motion characteristics. The VIV fatigue is mainly due to current conditions. Fracture mechanics assessment is also an essential issue that must be addressed in the design of SCRs. This paper presents a brief history in the use and development of SCRs since the first project implementation on Auger TLP in 1994. The paper also summarizes major steps that must be considered in the design of SCRs and how to explain their behavior in different water depths and environmental conditions. Existing design boundaries for SCRs are discussed with emphasis on the capabilities of new technologies that enable engineers to go beyond these boundaries. Projects with unique SCR features and their implementation are compiled and presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call