Abstract
About ten years after their introduction to the market (happened in 2006), the so-called second generation superficially porous particles (SPPs) have undoubtedly become the benchmark as well as, very often, the preferred choice for many applications in liquid chromatography (LC), when high efficiency and fast separations are required. This trend has interested practically all kinds of separations, with the only exception of chiral chromatography (at least so far). The technology of production of base SPPs is advanced, relatively simple and widely available. The deep investigation of mass transfer mechanisms under reversed-phase (RP) and normal-phase (NP) conditions for achiral separations has shown the advantages in the use of these particles over their fully porous counterparts. In addition, it has been demonstrated that SPPs are extremely suitable for the preparation of efficient packed beds through slurry packing techniques. However, the research in this field is in continual evolution. In this article, some of the most advanced concepts and modern applications based on the use of SPPs, embracing in particular ultrafast chiral chromatography and the design of SPPs with engineered pore structures or very reduced particle diameter, are revised. We describe modern trends in these fields and focus on those aspect where further innovation and research will be required. Graphical Abstract Word cloud of cutting edge applications of superficially porous particles in liquid chromatography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.