Abstract

In this paper, the problem of delay-dependent stability analysis of fractional-order systems with time-varying delay is investigated. First, a class of novel fractional-order integral inequalities for quadratic functions by constructing appropriate auxiliary functions is proposed, which has been proven to be useful in analyzing fractional-order systems with time-varying delay. Based on these proposed inequalities, the Lyapunov–Krasovskii functions are designed to deal with the time-varying delay terms, reducing the conservatism of the stability criteria. Furthermore, delay-dependent criteria are derived to achieve asymptotic stability of fractional-order systems with time-varying delay. Finally, two examples are provided to illustrate the effectiveness and feasibility of the proposed stability criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.