Abstract

Abstract Herein, analytical solutions of three-dimensional (3D) diffusion, telegraph, and Burgers' models that are equipped with three memory indices are derived by using an innovative fractional generalization of the traditional differential transform method (DTM), namely, the threefold-fractional differential transform method (threefold-FDTM). This extends the applicability of DTM to comprise initial value problems in higher fractal spaces. The obtained solutions are expressed in the form of a γ¯-fractional power series which is a fractional adaptation of the classical Taylor series in several variables. Furthermore, the projection of these solutions into the integer space corresponds with the solutions of the classical copies for these models. The results detect that the suggested method is easy to implement, accurate, and very efficient in (non)linear fractional models. Thus, research on this trend is worth tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call