Abstract

The Gamma-Ray Camera Upgrade (GCU) project aims at installing a new set of 19 scintillators with multi-pixel photon counter (MPPC) embedded, capable to meet the high fluxes expected during deuterium-tritium plasmas while improving the diagnostic spectroscopic capabilities. GCU will benefit from the Advanced Telecommunications Computing Architecture (ATCA)-based Data Acquisition System (DAQ), successfully installed and commissioned during the JET-EP2 enhancement. However, to cope with the new GCU detector signals, the DAQ Field Programmable Gate Array (FPGA) codes need to be rebuilt. This work presents the FPGA code upgrade for Gamma Camera (GC) DAQ, capable to sustain the expected fast response of new detectors, while exploiting the full capabilities of the DAQ. Dedicated codes were designed, capable to acquire the new signals at full rate, and simultaneously processing them in real-time through suitable algorithms, fitted to the new signals shape. First results of real-time processing codes applied to data from detector prototypes are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.