Abstract
Through the injection of a Fowler-Nordheim tunnel current or the inversion of oxide fields during irradiation (Radiation-Induced Charge Neutralization), the oxide charge trapped in thick-oxide (300 nm) commercial RADFETs, often called QOT could be erased. Novel trapped-hole and interface characteristics were observed after treatments of this type at high doses. With both erasure techniques, it was possible only to neutralize a fraction of the oxide trapped charge. A non negligible amount of charge and border traps is deemed here to be “intractable”. That adjective an a symbol, QIN, are introduced for the first time in this paper. Later sections discuss the possible impact of these results. The conclusion for dosimetry is that a “reusable RADFET” dosimeter, working up to an unprecedented dose before wearing out, may be a practical possibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.