Abstract

The use of water-processable binders could lower production costs and grant easier and more environment-friendly production of Li-ion batteries. This work investigates the use of two water-processable binders, namely polyvinylacetate (PVA) and sodium alginate (Alg), in high-voltage cathode electrodes for Li-ion batteries. We focused our work on the use of these sustainable binders for cathodes based on LiNi0.5Mn1.5O4, a commercially available material with a very high Li+ deinsertion/insertion potential (4.7-4.75 V versus Li+/Li) and a theoretical specific capacity of 147 mAh g-1. The electrochemical performance of cathodes with PVA and Alg are compared to those obtained with PVdF-based electrodes at 30°C in conventional electrolyte. Among all, Alg-based cathodes show the best rate capability up to 5C and cycle stability, with 95% capacity retention after 100 cycles because of the formation of thinner and less resistive layer on the electrode than PVA- and PVdF-based cathodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.