Abstract
In this paper, we first construct the Cauchy q-shift operator T(a, b;Dxy) and the Cauchy q-difference operator L(a, b; θxy). We then apply these operators in order to represent and investigate some new families of q-polynomials which are defined in this paper. We derive some q-identities such as generating functions, symmetry properties and Rogers-type formulas for these q-polynomials. We also give an application for the q-exponential operator R(bDq).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.