Abstract

A nonionic poly(oxyethylene) monoalkyl ether (C12(EO)6) and a cationic hexadecylpyridinium bromide (HPB) were used to achieve warm/cool transparency transition switchability, depending on the decrease in the hydration of the EO-headgroup of C12(EO)6 above the cloud point (Tc) and the crystallization of HPB below the Krafft point (Tk). The liquid state shows the advantage of being free-flowing, frost-resistance, flexible-adjustment and solar-energy-storing-capability due to the moisture-rich characteristics, while the hydrogel state exhibits free-standing properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.