Abstract

In this work, three fluorescent probes for detection of hydrogen sulfide (H2S) where prepared based on gallium(III) corrole complexes bearing nitro groups at β-pyrrolic positions. Two of the compounds selected, the 3-nitro-5,10,15- tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa-NO2) and the 3,17-dinitro-5,10,15-tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa-2NO2) present one and two nitro groups directly linked to the β-pyrrolic position. The third compound, the (E)-3-(2-nitroprop-1-en-1-yl)-5,10,15-tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa-EtNO2), has a carbon-carbon double bond spacer between the corrole unit and the nitro group. All these derivatives were obtained from 5,10,15-tris(pentafluorophenyl)corrolatogallium(III)(pyridine) (CGa). The precursor CGa and the derivative CGa-EtNO2 behaved as turn-OFF probes, while compound CGa-NO2 responded as a turn-ON probe in the presence of H2S in the pH range of 5–9. Mechanistic studies show that the interaction of H2S with the probes involves its coordination with gallium(III) and in some cases the reduction of the nitro group to a new aminated corrole. While the formation of the coordination complex with H2S is almost immediate, the kinetics of the reduction is slow. Interestingly, for CGa-NO2 the two processes can be explored in a ratiometric sensing of H2S in a non-aqueous solution showing a good linearity over an extended concentration range (5–200 μM). The response of the corroles to H2S in intracellular medium was studied in 2D cultured cells (HeLa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.