Abstract

The authors derive a new class of finite-dimensional recursive filters for linear dynamical systems. The Kalman filter is a special case of their general filter. Apart from being of mathematical interest, these new finite-dimensional filters can be used with the expectation maximization (EM) algorithm to yield maximum likelihood estimates of the parameters of a linear dynamical system. Important advantages of their filter-based EM algorithm compared with the standard smoother-based EM algorithm include: 1) substantially reduced memory requirements, and 2) ease of parallel implementation on a multiprocessor system. The algorithm has applications in multisensor signal enhancement of speech signals and also econometric modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.