Abstract
The main constituents of saffron are the apocarotenoids crocins and crocetin, present in the stigmas. Numerous healthy properties, especially those related to the effects on the central nervous system, have been attributed to these compounds but the metabolites responsible for these effects are still unknown. Previous evidences in animal models suggest a role for the gut microbiota in the pharmacokinetics and the neuroprotective effects of these compounds. However, the interaction between these apocarotenoids and the gut microbiota has been poorly studied. In this article, we have thoroughly investigated the batch fermentation of crocin-1 and crocetin (10 μM) with human fecal samples of two donors at different incubation times (0-240 h) using a metabolomic approach. We corroborated a rapid transformation of crocin-1 which looses the glucose molecules through de-glycosylation reactions until its complete transformation into crocetin in 6 hours. A group of intermediate crocins with different degrees of glycosylation were detected in a very short time. Crocetin was further metabolized and new microbial metabolites produced by double-bond reduction and demethylation reactions were identified for the first time: dihydro and tetrahydro crocetins and di-demethyl crocetin. In addition, we detected changes in the levels of the short chain fatty acids valeric acid and hexanoic acid suggesting further structural modifications of crocetin or changes in the catabolic production of these compounds. This research is a pioneering study of the action of the human gut microbiota on the saffron apocarotenoids and goes one step further towards the discovery of metabolites potentially involved in the benefits of saffron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.