Abstract
The fifth type of Chebyshev polynomials was used in tandem with the spectral tau method to achieve a semianalytical solution for the partial differential equation of the hyperbolic first order. For this purpose, the problem was diminished to the solution of a set of algebraic equations in unspecified expansion coefficients. The convergence and error analysis of the proposed expansion were studied in-depth. Numerical trials have confirmed the applicability and the accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.