Abstract
Unification at MGUT∼3×1016 GeV of the three Standard Model (SM) gauge couplings can be achieved by postulating the existence of a pair of vectorlike fermions carrying SM charges and masses of order 300 GeV–1 TeV. The presence of these fermions significantly modifies the vacuum stability and perturbativity bounds on the mass of the SM Higgs boson. The new vacuum stability bound in this extended SM is estimated to be 117 GeV, to be compared with the SM prediction of about 128 GeV. An upper bound of 190 GeV is obtained based on perturbativity arguments. The impact on these predictions of type I seesaw physics is also discussed. The discovery of a relatively ‘light’ Higgs boson with mass ∼117 GeV could signal the presence of new vectorlike fermions within reach of the LHC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.