Abstract

We describe the optimization of a poly(Phe) synthesis system, the conditions of which have been applied for efficient translation of heteropolymeric mRNAs. Here we identify two parameters that are essential to obtain translation at efficiency and accuracy levels equivalent to those in vivo, viz., the fine-tuning of the energy-rich components with an acetyl–phosphate substrate for energy regeneration, as well as the ionic conditions.Applying this system revealed a number of new features: (i) 70S ribosomes are able to recycle within 300 s in a non-enzymatic fashion in the absence of tmRNA. This observation might explain the fact that a knockout of the tmRNA gene ssrA is not lethal for Escherichia coli cells in contrast to other bacterial strains, such as Bacillus subtilis. (ii) The high efficiency of the system was exploited to analyze the misincorporation of various amino acids (resolution limit=1:15,000). No misreading was observed at the middle codon position and only marginal effects were observed at the first one (even when misreading was artificially stimulated 20- to 30-fold), yielding an improved definition of the near-cognate and non-cognate aminoacyl-tRNAs. (iii) Aminoglycosides increase Phe and Lys incorporation about 2-fold in the presence of poly(U) or poly(UUC) and poly(A), respectively, and induce a back-translocation (except hygromycin B) exclusively in the absence of EF-G•GTP, as do the non-related drugs viomycin and edeine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.