Abstract

Abstract The paper is devoted to the study of fine properties of the first eigenvalue on negatively curved spaces. First, depending on the parity of the space dimension, we provide asymptotically sharp harmonic-type expansions of the first eigenvalue for large geodesic balls in the model n-dimensional hyperbolic space, complementing the results of Borisov and Freitas (2017), Hurtado, Markvorsen and Palmer (2016) and Savo (2008); in odd dimensions, such eigenvalues appear as roots of an inductively constructed transcendental equation. We then give a synthetic proof of Cheng’s sharp eigenvalue comparison theorem in metric measure spaces satisfying a Bishop–Gromov-type volume monotonicity hypothesis. As a byproduct, we provide an example of simply connected, non-compact Finsler manifold with constant negative flag curvature whose first eigenvalue is zero; this result is in a sharp contrast with its celebrated Riemannian counterpart due to McKean (1970). Our proofs are based on specific properties of the Gaussian hypergeometric function combined with intrinsic aspects of the negatively curved smooth/non-smooth spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.