Abstract
Micro-array data are typically characterized by high dimensional features with a small number of samples. Several problems in identifying genes causing diseases from micro-array data can be transformed into the problem of classifying the features extracted from gene expression in micro-array data. However, too many features can cause low prediction accuracy as well as high computational complexity. Dimensional reduction is a method to eliminate irrelevant features to improve the prediction accuracy. Typically, the eigenvalues or dimensional data variance from principal component analysis are used as criteria to select relevant features. This approach is simple but not efficient since it does not concern the degree of data overlap in each dimension in the feature space. A new method to select relevant features based on degree of dimensional data overlap with proper feature selection was introduced. Furthermore, our study concentrated on small sized data sets which usually occur in reality. The experimental results signified that this new approach can achieve substantially higher prediction accuracy when compared with other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.