Abstract

The Schrodinger equation type nonlinear coupled Maccari system is a significant equation that flourished with the wide-ranging arena concerning fluid flow and the theory of deep-water waves, physics of plasma, nonlinear optics, etc. We exploit the enhanced tanh approach and the rational (G′/G)-expansion process to retrieve the soliton and dissimilar soliton solutions to the Maccari system in this study. The suggested systems of nonlinear equations turn into a differential equation of single variable through executing some operations of wave variable alteration. Thereupon, with the successful implementation of the advised techniques, a lot of exact soliton solutions are regained. The obtained solutions are depicted in 2D, 3D, and contour traces by assigning appropriate values of the allied unknown constants. These diverse graphical appearances assist the researchers to understand the underlying processes of intricate phenomena of the leading equations. The individual performances of the employed methods are praiseworthy which justify further application to unravel many other nonlinear evolution equations ascending in various branches of science and engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call