Abstract
For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is straightforward to generate samples from the f-axial exponential distribution. Asymptotic result reveals two things. The first is that linear exponential distribution can be used to approximate the l-axial exponential distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property though it doesn't have strict memoryless property. Some trigonometric moments are also derived in closed forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial exponential distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.