Abstract

The recently proposed relativistic mapping between nuclear magnetic resonance (NMR) shielding and nuclear spin-rotation (NSR) coupling tensors [J. Chem. Phys. 2013, 138, 134104] is employed to establish new experimental (more precisely, experimentally derived) absolute shielding constants for H and X in HX (X = F, Cl, Br, and I). The results are much more accurate than the old "experimental" values that were based on the well-known nonrelativistic mapping. The relativistic mapping is very robust in the sense that it is rather insensitive to the quality of one-particle basis sets and the treatment of electron correlation. Relativistic effects in the NSR coupling constants are also elucidated in depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call