Abstract

In this paper, the extended tanh method, the sech–csch ansatz, the Hirota’s bilinear formalism combined with the simplified Hereman form and the Darboux transformation method are applied to determine the traveling wave solutions and other kinds of exact solutions for the ( 2+1) -dimensional Konopelchenko–Dubrovsky equation and abundant new soliton solutions, kink solutions, periodic wave solutions and complexiton solutions are formally derived. The work confirms the significant features of the employed methods and shows the variety of the obtained solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.