Abstract
The (3+1)-dimensional double sine-Gordon equation plays a crucial role in various physical phenomena, including nonlinear wave propagation, field theory, and condensed matter physics. However, obtaining exact solutions to this equation faces significant challenges. In this article, we successfully employ a modified G′G2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left( \\dfrac{G'}{G^2}\\right) $$\\end{document}-expansion and improved tanϕξ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ an \\left( \\dfrac{\\phi \\left( \\xi \\right) }{2}\\right) $$\\end{document}-expansion methods to construct new analytical solutions to the double sine-Gordon equation. These solutions can be divided into four categories like trigonometric function solutions, hyperbolic function solutions, exponential solutions, and rational solutions. Our key findings include a rich spectrum of soliton solutions, encompassing bright, dark, singular, periodic, and mixed types, showcasing the (3+1)-dimensional double sine-Gordon equation ability to model diverse wave behaviors. We uncover previously unreported complex wave structures, revealing the potential for complex nonlinear interactions within the (3+1)-dimensional double sine-Gordon equation framework. We demonstrate the modified G′G2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\left( \\dfrac{G'}{G^2}\\right) $$\\end{document}-expansion and improved tanϕξ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ an \\left( \\dfrac{\\phi \\left( \\xi \\right) }{2}\\right) $$\\end{document}-expansion methods effectiveness in handling higher-dimensional nonlinear partial differential equations, expanding their applicability in mathematical physics. These method offers enhanced flexibility and broader solution categories compared to conventional approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.