Abstract

In this paper, the Toda equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity via the discrete \( \left( {\frac{{G'}}{G}} \right) \)-expansion method are researched. As a result, with the aid of the symbolic computation, new hyperbolic function solution and trigonometric function solution with parameters of the Toda equation are obtained. At the same time, new envelop hyperbolic function solution and envelop trigonometric function solution with parameters of the discrete nonlinear Schrodinger equation with a saturable nonlinearity are obtained. This method can be applied to other nonlinear differential-difference equations in mathematical physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.