Abstract
A new combination of Lie symmetry and Singular Manifold methods has been employed to study (3 + 1)‐dimensional generalized Kadomtsev‐Petviashvili (KP). Infinite‐dimensional space of Lie vectors has been established. Single and dual linear combinations of Lie vectors are used after appropriate calculations of the arbitrary functions to reduce the equation to an ordinary differential equation (ODE). The resulting ODE is then analytically solved through the singular manifold method which resulted in a Bäcklund truncated series with seminal analysis leading to a Schwarzian differential equation in the Eigenfunction φ (η). Solving this differential equation leads to new analytical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.