Abstract

The Korteweg–de Vries (KdV) equation with higher order nonlinearity models the wave propagation in one-dimensional nonlinear lattice. A higher-order extension of the familiar KdV equation is produced for internal solitary waves in a density and current stratified shear flow with a free surface. The variational approximation method is applied to obtain the solutions for the well-known KdV equation. Explicit solutions are presented and compared with the exact solutions. Very good agreement is achieved, demonstrating the high efficiency of variational approximation method. The existence of a Lagrangian and the invariant variational principle for the higher order KdV equation are discussed. The simplest version of the variational approximation, based on trial functions with two free parameters is demonstrated. The jost functions by quadratic, cubic and fourth order polynomials are approximated. Also, we choose the trial jost functions in the form of exponential and sinh solutions. All solutions are exact and stable, and have applications in physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.