Abstract

AbstractThe tectonic deformation on the eastern margin of the Qaidam Basin, which has preserved complete sedimentary records, significantly influences the evolutionary model of the northeastern margin of the Tibetan Plateau. However, the deformation history in this area during the Holocene remains unclear. This study is based on the high‐precision digital elevation model obtained through drone mapping technology, which identifies three active faults on the eastern margin of the Qaidam Basin: the Xiariha Fault (XRHF) and Yingdeerkang Fault Yingdeerkang Fault (YKF) are NW‒SE‐orientated dextral faults, whereas the Reshui‐Taosituohe Fault (RTF) is a nearly east‒west‐orientated sinistral fault. Based on the optically stimulated luminescence dating of the landform surfaces, the rates of strike‐slip offset are as follows: those of the XRHF range from 1.12 ± 0.07 to 1.68 ± 0.12 mm/yr and those of the YKF are from 0.99 ± 0.06 to 2.29 ± 0.13 mm/yr. Recent paleoseismic events occurred along the RTF at approximately 714–1,792 years BP and at 700 ± 18 years BP, implying a recurring millennial pattern. Together, these faults possibly form a complex cross‐fault system along the southeastern edge of the basin, heightening seismic risk. Deformation in the western part of the northeastern Tibetan Plateau is driven by slip on the Altyn Tagh Fault and compression in the Qaidam Basin. The central part experiences slip on the East Kunlun Fault, along with secondary faults, shortening, and block rotation. The eastern part primarily experiences slip along the Haiyuan Fault.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call