Abstract

Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.