Abstract

We present new evidence for superradiance in the methanol 6.7 GHz spectral line for three different star-forming regions: S255IR-NIRS3, G24.329+0.144, and Cepheus A. Our analysis shows that some of the intensity flares exhibiting fast flux rise times and asymmetric light curves reported in these sources can naturally be explained within the context of superradiance. When a threshold for the inverted population column density is exceeded in a maser-hosting region, the radiation mode switches from one regulated by stimulated emission (maser) to superradiance. Superradiance, as a more efficient energy release mechanism, manifests itself through strong bursts of radiation emanating from spatially compact regions. Elevated inverted population densities and the triggering of superradiance can be due to a change in radiative pumping. Here, we show that an increase in the pump rate and the inverted population density of only a factor of a few results in a significant increase in radiation. While the changes in the pump rate can take place over a few hundred days, the rise in radiation flux density when superradiance is initiated is drastic and happens over a much shorter time-scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.