Abstract

Thioredoxin of the h-type — earlier linked to the reduction of wheat (Triticum durum Desf. cv. Monroe) endosperm proteins — was converted from an oxidized to a partially reduced state during germination and seedling development. While the abundance of thioredoxin progressively decreased during this period, the availability of reducing equivalents, defined as the product of the relative abundance of thioredoxin and the percent reduction, increased. The amount of the enzyme catalyzing the reduction of thioredoxin h (NADP-thioredoxin reductase) remained constant. The activities of enzymes generating the NADPH needed for the reduction of thioredoxin (glucose 6-phosphate and 6-phosphogluconate dehydrogenases) increased. The level of thioredoxin h in the endosperm appeared to be controlled by the embryo via hormones. Gibberellic acid enhanced the disappearance of thioredoxin, whereas abscisic acid showed the opposite effect. Moreover, uniconazole, an inhibitor of gibberellic acid synthesis, slowed seedling growth and inhibited the disappearance of thioredoxin in a manner reversible by gibberellic acid. The results are consistent with a role for thioredoxin h in initiating the mobilization of nitrogen and carbon needed for germination and seedling development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.